Sunday, March 23, 2025

Build Your First Interactive Generative AI Website with Meta’s LLaMA Model

Hi friends! 👋

In this tutorial, you’ll create a super simple website where users can type a question and get a response from an AI — just like ChatGPT, but using Meta’s LLaMA model (an open-source AI model) through Hugging Face.

You’ll learn how to:

  • ✅ Use an AI model
  • ✅ Create a basic web page
  • ✅ Connect it all with Python code

🧠 What Are These Tools?

Before we start coding, let’s understand the tools we’re using:

🟣 Hugging Face

Think of this as a giant library of powerful AI models (like LLaMA, GPT, etc.) that you can use in your own apps. It’s like the Netflix of AI models — just log in, choose a model, and go!

🟠 Flask (Python)

This is a mini program that turns your Python code into something that can be used on a website. It’s like the brain behind the scenes — it listens to the user’s question, sends it to the AI, and gives back the answer.


✅ Step-by-Step Tutorial

🔧 Step 1: Open Google Colab

Go to Google Colab and open a new notebook.

📦 Step 2: Install the Tools We Need

!pip install flask flask-ngrok transformers torch pyngrok

🔐 Step 3: Log Into Hugging Face

  1. Go to https://huggingface.co
  2. Sign up/log in → Go to Settings > Access Tokens
  3. Copy your token and paste it into this code:
from huggingface_hub import login
HUGGING_FACE_KEY = "paste-your-key-here"
login(HUGGING_FACE_KEY)

🤖 Step 4: Load Meta’s LLaMA Model

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "meta-llama/Llama-3.2-1B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

🧠 Step 5: Let’s Build the Backend (The Brain Behind the Website)

What’s the backend? It’s like the chef in a restaurant. The user places an order (asks a question), and the backend prepares the response using AI.

from flask import Flask, request, jsonify
from flask_ngrok import run_with_ngrok

app = Flask(__name__)
run_with_ngrok(app)

@app.route("/ask", methods=["POST"])
def ask():
    prompt = request.json.get("prompt", "")
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs["input_ids"], max_length=100)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return jsonify({"response": response})

🌐 Step 6: Create the Web Page (Frontend)

Now, let’s build the frontend — the part that people see and interact with.

%%writefile index.html
<!DOCTYPE html>
<html>
<head><title>Ask AI</title></head>
<body>
  <h2>Ask the AI</h2>
  <textarea id="prompt" rows="4" cols="50" placeholder="Type your question here..."></textarea><br>
  <button onclick="askAI()">Ask</button>
  <p><strong>Response:</strong> <span id="response"></span></p>

  <script>
    async function askAI() {
      const prompt = document.getElementById("prompt").value;
      const res = await fetch("/ask", {
        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({ prompt: prompt })
      });
      const data = await res.json();
      document.getElementById("response").innerText = data.response;
    }
  </script>
</body>
</html>

🧩 Step 7: Connect It All and Run the App

from flask import send_from_directory

@app.route('/')
def serve_frontend():
    return send_from_directory('.', 'index.html')

app.run()

You'll get a link like this: https://xxxxx.ngrok.io
Click it and... 🎉 Your AI-powered website is LIVE!


🏁 Final Words

You just built:

  • A working AI assistant using Meta's LLaMA model
  • A custom web page
  • A backend in Python to power it

You're officially coding with real AI models. That’s amazing. Welcome to the world of AI development!

No comments: